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Abstract. We investigate the spreading of damage in Ising models with Kawasaki spin–
exchange dynamics which conserves the magnetization. We first modify a recent master equation
approach to account for dynamic rules involving more than a single site. We then derive
an effective-field theory for damage spreading in Ising models with Kawasaki spin–exchange
dynamics and solve it for a two-dimensional model on a honeycomb lattice. In contrast to the
cases of Glauber or heat-bath dynamics, we find that the damage always spreads and never
heals. In the long-time limit the average Hamming distance approaches that of two uncorrelated
systems. These results are verified by Monte Carlo simulations.

1. Introduction

Damage spreading (DS) investigates how a small perturbation in a cooperative system
changes during the time evolution [1–4] (for a short review see, e.g. [5]). In order to
study DS two replicas of the system are considered which evolve stochastically under the
same noise realization (i.e. the same random numbers are used in a MC procedure). The
difference in the microscopic configurations of the two replicas constitutes the ‘damage’.
Depending on the Hamiltonian, the dynamic rules, and the external parameters the damage
will either spread or heal with time (or remain in a finite spatial region). This behaviour
distinguishes chaotic or regular phases.

Kinetic Ising models are among those systems for which DS has been studied most
intensively. The majority of the work has been devoted to single-spin–flip dynamic rules
such as Glauber, Metropolis or heat-bath dynamics [3–11] but also the Swendson–Wang
cluster algorithm has been investigated [12]. It has been found that the properties of DS (e.g.
the question whether the damage spreads or heals for a particular model) depend sensitively
on the dynamic rule chosen, i.e. DS is uniquely defined only if one specifies the Hamiltonian
and the dynamics. (Note that by considering all possible dynamic rules which are consistent
with physics of a single replica an unambiguous definition of DS for a particular model can
be obtained [13].)

The Glauber, Metropolis or heat-bath algorithms (as well as all other single-spin–
flip algorithms) are examples for a dynamics with non-conserved order parameter. There
are, however, many physical systems that can be described by kinetic Ising models with
order parameter conservation. A prominent example are, e.g. localized electrons where the
Ising variables describe the electronic occupation numbers, and the dynamics consists of
thermally assisted hops of an electron from one site to another. The simplest order parameter
conserving dynamics in an Ising model is the spin–exchange dynamics of Kawasaki [14]. In
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this paper we want to investigate DS for this dynamics. To this end we first generalize the
master equation approach [10, 11] to dynamic rules involving more than one site. We then
derive an effective-field theory for DS in an Ising model with spin–exchange dynamics and
solve it for a two-dimensional model on a honeycomb lattice. We find that in this model the
damage always spreads. The stationary value of the damage is given byD∗ = (1−m2)/2
(m is the magnetization) which corresponds to completely uncorrelated configurations. The
results of the effective-field theory are confirmed by Monte Carlo (MC) simulations.

2. Master equation approach

We consider two identical Ising models withN sites described by the HamiltoniansH(1)

andH(2) given by

H(n) = − 1
2

∑
ij

Jij S
(n)
i S

(n)
j (1)

whereS(n)i is an Ising variable with the values±1, andn = 1, 2 distinguishes the two
replicas.Jij is the exchange interaction between the spins which we take to beJ for nearest
neighbour sites and zero otherwise. The dynamics (also called the Kawasaki dynamics [14])
consists of exchanging spins on nearest-neighbour sites if the probability

P = v(1E/2) = e−1E/2T

e1E/2T + e−1E/2T
(2)

is larger than a random numberξ ∈ [0, 1). Here 1E is the energy change due to
the exchange of the spins andT denotes the temperature. With this dynamics the total
magnetization does not change with time, i.e. it is a conserved quantity.

Within the master equation approach [10, 11] the simultaneous time evolution of the
two replicas is described by the probability distribution

P(ν1, . . . , νN , t) =
〈∑
νi (t)

∏
i

δνi ,νi (t)

〉
(3)

where〈·〉 denotes the average over the noise realizations. The variableνi with the values
++, +−, −+, or −− describes the states of the spin pair (S

(1)
i , S

(2)
i ). In the case of a

spin–exchange dynamics the distributionP fulfils the master equation

d

dt
P (ν1, . . . , νN , t) = −

∑
〈ij〉

∑
µi,µj

P (ν1, . . . , νi, . . . , νj , . . . , νN , t)w(νi, νj → µi, µj )

+
∑
〈ij〉

∑
µi,µj

P (ν1, . . . , µi, . . . , µj , . . . , νN , t)w(µi, µj → νi, νj ) (4)

where〈ij〉 denotes all pairs of nearest neighbours andw(νi, νj → µi, µj ) is the probability
for a transition of the states of the sitesi and j from νi, νj to µi, µj . These transition
probabilities can be obtained from (2). In table 1 we list all processes(νi, νj → µi, µj )

which lead to creation or destruction of damage, the probabilities for these processes will
show up in the damage equation of motion later on. An important observation is that
damaged sites can be created and destroyed only in pairs. All damage creating processes in
table 1 can be transformed into each other by exchanging systems 1 and 2 and sitesi and
j . Their transition probabilities are therefore also related by symmetry. The same is true
for all damage destroying processes. Thus, it is sufficient to calculate only two independent
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Table 1. Damage creating and destructing processes for spin–exchange dynamics, all other
processes do not change the damage.

++,−− → +−,−+
Two damaged ++,−− → −+,+−
sites created −−,++ → +−,−+

−−,++ → −+,+−

+−,−+ → ++,−−
Two damaged +−,−+ → −−,++
sites destroyed −+,+− → ++,−−

−+,+− → −−,++

of the probabilitiesw(νi, νj → µi, µj ), e.g.

w(++,−−→ +−,−+) = [v(h(2)i − h(2)j + 2J )− v(h(1)i − h(1)j + 2J )]

×2(h(1)i − h(1)j − h(2)i + h(2)j ) (5a)

w(+−,−+→ ++,−−) = [v(h(2)j − h(2)i + 2J )− v(h(1)i − h(1)j + 2J )]

×2(h(1)i − h(1)j − h(2)j + h(2)i ) (5b)

wherehi =
∑
j Jij Sj is the local magnetic field of sitei.

As in the case of Glauber or heat-bath dynamics we derive an effective-field theory
by assuming that fluctuations at different sites are statistically independent which amounts
to approximating the distributionP(ν1, . . . , νN , t) by a product of single-site distributions
Pνi (t). Order parameter conservation in the two systems imposes two conditions:P++(t)+
P+−(t) = constant andP++(t)+ P−+(t) = constant. Inserting the decomposition

P(ν1, . . . , νN , t) =
N∏
i=1

Pνi (t) (6)

into the master equation (4) gives a system of coupled equations of motion for the single-site
distributions

d

dt
Pνi =

∑
νj ,µi ,µj

[−PνiPνjW(νi, νj → µi, µj )+ PµiPµjW(µi, µj → νi, νj )] (7)

whereW(νi, νj → µi, µj ) is the transition probabilityw averaged over the statesν of all
sites except fori andj . The total damage (Hamming distance)D can be expressed in terms
of the single-site distributionPν :

D =
〈

1

2N

N∑
i=1

|S(1)i − S(2)i |
〉
= P+− + P−+. (8)

We note, that in contrast to Ising models with a non-conserved order parameter, the effective-
field theory (7) is not very useful in describing asingle system since the only remaining
dynamic variable for a single system, namelym, does not change during the time evolution.
The damage is, however, not conserved and (7) constitutes a useful mean-field theory for
its time evolution.

From the single-site master equation (7) and table 1 we derive an equation of motion of
the damage. Using some symmetry relations [15] between the transition probabilitiesW , it
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reads
d

dt
D = −2D2W(+−,−+→ ++,−−)+ 2[(1−D)2−m2]W(++,−−→ +−,−+).

(9)

So far the considerations have been valid for all dimensions and lattice types. To proceed
we now study a particular system, namely a two-dimensional Ising model on a honeycomb
lattice. The same model was studied in [10, 11] for single-spin–flip dynamic rules. The
calculation of the average transition probabilitiesW can be carried out analogously to the
case of single-spin–flip dynamics. It is straightforward but tedious, the details will be
published elsewhere [15]. Here we only give the results:

W(++,−−→ +−,−+) =
(
−D

4

2
+D3− 3D2

4
+ D

2
− D

2m2

4
+ Dm

2

2

)
t2

+
(
−D

4

16
+ D

3

4
− 3D2

8
+ D

4
+ D

2m2

8
− Dm

2

4

)
t4 (10a)

W(+−,−+→ ++,−−) =
(
−D

4

2
+D3− 3D2

4
+ 1

4
− D

2m2

4
− m

2

4

)
t2+(

−D
4

16
+ 1

16
− m

2

8
+ m

4

16

)
t4. (10b)

Here tn = tanh(nJ/T ). If we insert (10b) into the damage equation of motion (9) we
observe that the death term (first line of equation (9)) is of orderD2 for smallD. This is a
major difference to the case of Glauber and heat-bath dynamics [10, 11] (where the death
term is of orderD) and reflects the fact that for spin–exchange dynamics the damage can
only be destroyed pairwise. In contrast, the birth term is of orderD (as it is for Glauber order
heat-bath dynamics) because already a single damaged site can produce further damage in
its neighbourhood. Consequently, for small enoughD the birth term will always be larger
than the death term and the damage will never heal completely.

We now discuss the stationary solutions of the damage equation of motion (9) and their
stability. We restrict ourselves to the case that the system is in equilibrium when the damage
is introduced. Thus,m can be taken to be the equilibrium value of the magnetization which
is zero forT > Tc ≈ 2.11J and

m2 =
3
4(tanh 3J/T + tanhJ/T )− 1

3
4 tanhJ/T − 1

4 tanh 3J/T
(11)

for T < Tc in our effective-field theory [10]. Obviously,D = D∗1 = 0 is always a fixed
point (FP) of (9). To investigate its stability we expand (9) to linear order inD. The
resulting linearized equation of motion is given by dD/dt = λ1D with

λ1 = (1−m4) tanh
2J

T
+ 1

2
(1−m2)2 tanh

4J

T
. (12)

The Lyapunov exponentλ1 is always positive, thus the FPD∗1 is always unstable. In figure 1
we show the temperature dependence ofλ1. Since the Hamiltonian and the dynamic rule
are invariant under a global flip of all spins, the existence of the FPD∗1 = 0 implies the
existence of the FPD∗2 = 1 with the same stability properties.

In the paramagnetic phase the only other stationary solution of (9) in the physical interval
0 6 D 6 1 is D∗3 = 1

2. By expanding (9) aroundD = 1
2 we obtain the corresponding

Lyapunov exponent,

λ3 = −3

8
tanh

2J

T
− 13

64
tanh

4J

T
. (13)
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Figure 1. Results of the effective-field theory for damage spreading in the kinetic Ising model
with spin–exchange dynamics.

Sinceλ3 is always negative the FPD∗3 = 1
2 is stable in the entire paramagnetic phase. The

temperature dependence ofλ3 is also shown in figure 1.
In the ferromagnetic phase there are two more stationary solutions of (9) in addition

to D∗1 = 0 andD∗2 = 1. If the two systems have the same value of the magnetization,
m(1) = m(2) = m we obtain the FPD∗3 = (1− m2)/2. If the two systems have opposite
magnetizationm(1) = −m(2) = m we obtain the FPD∗4 = (1+ m2)/2. SinceD∗3 andD∗4
are related by a global flip of all spins in one of the systems, they have the same stability
properties. The corresponding Lyapunov exponents are given by

λ3 = λ4 =
(
−3

8
− m

2

2
+ m

4

4
+ m

6

2
+ m

8

8

)
tanh

2J

T

+
(
−13

64
+ 5m2

16
+ m

4

32
− 3m6

16
+ 3m8

64

)
tanh

4J

T
. (14)

They are always smaller than zero, thusD∗3 andD∗4 are stable in the entire ferromagnetic
phase. The temperature dependence ofD∗3 andλ3 is shown in figure 1.

We now show that at the stable FPs the configurations of the two systems are completely
uncorrelated. From the definition (8) of the damage we obtain

D = 1

2N

N∑
i=1

〈|S(1)i − S(2)i |〉 =
1

2N

N∑
i=1

(1− 〈S(1)i S(2)i 〉). (15)

For uncorrelated configurations ofS(1)i andS(2)i we have〈S(1)i S(2)i 〉 = 〈S(1)i 〉〈S(2)i 〉 = ±m2 if
the two systems have equal or opposite magnetization, respectively. Thus, for uncorrelated
configurations we obtainD = (1∓m2)/2. These are exactly the values ofD∗3 andD∗4.

3. MC simulations

We have verified the main predictions of the mean-field theory by MC simulations of a
three-dimensional Ising model with Kawasaki spin–exchange dynamics according to (2).
The simulations are carried out on cubic lattices with up toN = 1013 sites with periodic
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Figure 2. Time evolution of the damage in an Ising model with spin–exchange dynamics. The
data points represent averages over 100 runs of a system of 273 sites.

boundary conditions. By comparing different system sizes we verify that any finite-size
corrections to the results are smaller than the statistical error of the simulation. This is
easily possible since we are away from a spreading transition and thus the damage correlation
length is finite.

In this study we are not interested in phase separation processes. We thus prepare the
system with the correct equilibrium magnetization value for each temperature simulated.
2000 MC sweeps are carried out to equilibrate the system. Then the initial damageD0

is created by exchanging randomly chosen pairs of nearest-neighbour spins in one of the
systems. We use values ofD0 between 5× 10−4 and 5× 10−2. After that both systems
evolve in parallel using the same random numbers. Examples of the time evolution of
the damage are shown in figure 2. Within the first 5 to 10 MC sweeps the damage
increases approximately exponentially with time. A fit of the data to an exponential
law gives an estimate for the Lyapunov exponentλ1. We note that the damage time
evolution shows a systematic deviation from an exponential law which manifests in a slight
downward curvature in figure 2. This deviation stems from the fact that we are simulating
a lattice system. Since with Kawasaki dynamics the damage can spread at most two lattice
constants per time step the increase of the damage with time is bounded by a power law,
D(t) 6 Dmax∼ (2t)3D0. Therefore, a pure exponential spreading can only be observed as
long as the probability for any site (or pair of sites) to become damaged during a particular
time step is small compared to one. (In this case the above bound set by the lattice does not
play a role.) For our system this condition is, however, only fulfilled for small temperatures.

In order to determine the long-time limit of the average damage we average its values
over 5000 MC sweeps after a plateau has been reached. The results of our simulations
are summarized in figure 3. We indeed find that the FPD∗1 is unstable, and that the
damage always spreads. The Lyapunov exponentλ1 of the FPD∗1 is positive for all
temperatures investigated. The asymptotic average damage takes exactly the value of two
uncorrelated configurations, namelyD∗3 = (1 − m2)/2. (We did not observe the other
stable FPD∗4 = (1+m2)/2 since we always started with the two systems having the same
magnetization.)
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Figure 3. Asymptotic average damageD∗3 and Lyapunov exponentλ1 for the kinetic Ising
model with spin–exchange dynamics. The Lyapunov exponents have been obtained from 100
runs of a 273 system. The FP valuesD∗3 has been calculated from 10 runs of a 1013 system.
Their statistical errors are smaller than the symbol size.

4. Conclusions

To summarize, we have used an effective-field theory and MC simulations to show that the
time evolution of a kinetic Ising model with Kawasaki spin–exchange dynamics is chaotic
for all temperatures in the sense that the FPD∗1 = 0 is unstable. Moreover, we have shown
that two systems whose initial configurations differ only at a few sites become completely
uncorrelated in the long-time limit. This corresponds to an asymptotic average damage of
D = (1−m2)/2.

In this last part of this paper we wish to discuss how general these results are. Since the
properties of DS are known to depend on how the random numbers are used in the update
process [13] for single-spin–flip dynamics, an analogous comparison for spin–exchange
dynamics is desirable. However, the main properties of our solution will be robust against
such changes in the update rules. In particular, the fact that the damage death rate (see
equation (9)) is of orderD2 is a result of the spin–exchange mechanism alone. It is therefore
independent of how the random numbers are used in the update rule. This suggests that
the main finding of this paper, namely that the spin–exchange dynamics is chaotic for
all temperatures is valid not only for the Kawasaki update rule (2) but in general. As a
first step of a future systematic investigation of different update rules we have studied a
modified version of the Kawasaki dynamics. The modification consists of using the random
numberξ if the configuration of the spin pair selected for the exchange is(+−) but using
1− ξ instead if the configuration is(−+). This modified update rule can be seen as the
spin–exchange analogue of the heat-bath dynamics (in the same sense as the Kawasaki
dynamics can be seen as the analogue of the Glauber dynamics). In figure 4 we compare
the asymptotic average damage of the Kawasaki and the modified spin–exchange dynamics.
The modified dynamics gives lower damage values than the Kawasaki dynamics for all
temperatures. Nonetheless, the fixed pointD∗1 = 0 is unstable for all finite temperatures,
and the asymptotic damage is finite. This is in agreement with the above suggestion that a
spin–exchange dynamics is always chaotic irrespective of the particular update rule.
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Figure 4. Comparison of the asymptotic average damageD∗3 for the kinetic Ising model with
Kawasaki and modified spin–exchange dynamics.

Let us finally discuss the relation of the DS process discussed here with other non-
equilibrium processes. As already mentioned, a key feature of DS with spin–exchange
dynamics is that damaged sites can heal only in pairs while they can diffuse alone and also
create further damage. This is different from the contact process and other processes in the
directed percolation universality class where a single active site can die locally with finite
probability. There is, however, a simple reaction-diffusion process which should show
qualitatively the same behaviour as DS with spin–exchange dynamics. Since for small
damageD the birth rate is proportional toD (and since damage is created in pairs) while
the death rate is proportional toD2 (see equations (9), (10)), such a reaction–diffusion
process could be defined by the reactions

A
p1−→ 3A

2A
p2−→ 0

(16)

and additional diffusion of the substanceA. For small concentrations ofA it should have
the same qualitative behaviour as DS with spin–exchange dynamics for small damage.
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